Structure and Li+ ion transport in a mixed carbonate/LiPF6 electrolyte near graphite electrode surfaces: a molecular dynamics study.
نویسندگان
چکیده
Electrolyte and electrode materials used in lithium-ion batteries have been studied separately to a great extent, however the structural and dynamical properties of the electrolyte-electrode interface still remain largely unexplored despite its critical role in governing battery performance. Using molecular dynamics simulations, we examine the structural reorganization of solvent molecules (cyclic ethylene carbonate : linear dimethyl carbonate 1 : 1 molar ratio doped with 1 M LiPF6) in the vicinity of graphite electrodes with varying surface charge densities (σ). The interfacial structure is found to be sensitive to the molecular geometry and polarity of each solvent molecule as well as the surface structure and charge distribution of the negative electrode. We also evaluated the potential difference across the electrolyte-electrode interface, which exhibits a nearly linear variation with respect to σ up until the onset of Li+ ion accumulation onto the graphite edges from the electrolyte. In addition, well-tempered metadynamics simulations are employed to predict the free-energy barriers to Li+ ion transport through the relatively dense interfacial layer, along with analysis of the Li+ solvation sheath structure. Quantitative analysis of the molecular arrangements at the electrolyte-electrode interface will help better understand and describe electrolyte decomposition, especially in the early stages of solid-electrolyte-interphase (SEI) formation. Moreover, the computational framework presented in this work offers a means to explore the effects of solvent composition, electrode surface modification, and operating temperature on the interfacial structure and properties, which may further assist in efforts to engineer the electrolyte-electrode interface leading to a SEI layer that optimizes battery performance.
منابع مشابه
A Study of Electrochemical Reduction of Ethylene and Propylene Carbonate Electrolytes on Graphite Using ATR-FTIR Spectroscopy
It is well known that when propylene carbonate (PC) is used as the primary solvent with common inorganic salts like LiPF6 there is essentially continuous electrolyte reduction with a graphite electrode at ca. 0.9 V vs. Li/Li, accompanied by gassing and graphite exfoliation. However, co-intercalation and subsequent reduction occurs only with PC and not the chemically closely related solvent ethy...
متن کاملIrreversible capacities of graphite anode for lithium-ion batteries
Electrochemical impedance spectroscopy (EIS) and in-situ intrinsic resistance measurements were applied to sandwiched disk graphite electrodes to investigate the mechanism of formation of irreversible capacity during initial galvanostatic or potentiostatic lithium intercalation into graphite in four different electrolyte formulations. The stability of the solid electrolyte interphase (SEI) film...
متن کاملNon-aqueous Electrolytes and Interfacial Chemistry in Lithium- ion Batteries
Xu, C. 2017. Non-aqueous Electrolytes and Interfacial Chemistry in Lithium-ion Batteries. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1525. 72 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9931-0. Lithium-ion battery (LIB) technology is currently the most promising candidate for power sources in applications such as portable...
متن کاملSuperconcentrated electrolytes for a high-voltage lithium-ion battery
Finding a viable electrolyte for next-generation 5 V-class lithium-ion batteries is of primary importance. A long-standing obstacle has been metal-ion dissolution at high voltages. The LiPF6 salt in conventional electrolytes is chemically unstable, which accelerates transition metal dissolution of the electrode material, yet beneficially suppresses oxidative dissolution of the aluminium current...
متن کاملNi-Composite Microencapsulated Graphite as the Negative Electrode in Lithium-Ion Batteries I. Initial Irreversible Capacity Study
A novel approach for suppressing the solvated lithium intercalation in graphite was developed by microencapsulating graphite with nanosized Ni-composite particles. The Ni-composite graphite showed great improvement in charge-discharge performance, coulomb efficiency, and cycling behavior when used as the negative electrode in a Li-ion cell with propylene carbonate (PC)-based electrolyte. For ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 18 40 شماره
صفحات -
تاریخ انتشار 2016